Asymptotic expansion for renewal functions, with application.

C.Dombry and L.Rabehasaina

Laboratoire de Mathématiques Besançon, Université de Franche Comté, France.

AMMSI Workshop, Troyes, Jan. 29-30 2015

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Framework

 $(X_k)_{k\in\mathbb{N}}$ i.i.d. ≥ 0 with c.d.f. F(.).

Renewal process N defined by

$$N(x) := \sup \left\{ n \geq 0 \mid S_n := \sum_{j=1}^n X_j \leq x \right\}, \quad x \geq 0,$$

and associated renewal function

$$U(x) := \mathbb{E}[N(x)] = \sum_{n=1}^{\infty} \mathbb{P}[S_n \le x] = \sum_{n=1}^{\infty} F^{*(n)}(x), \quad x \ge 0.$$

Framework

U(x) = mean number of occurances of a certain recurrent event before time x.

 \longrightarrow behaviour as $x \to \infty$?

In what follows, two cases:

- X_k 's lattice (\iff X_k with values in $d\mathbb{N}$ for some d, d=1 onward),
- X_k 's non lattice.

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Expansion of order 1

If X_1 admits a first moment μ then Blackwell's "elementary" renewal theorem \Longrightarrow

$$U(x+h)-U(x) \longrightarrow \frac{h}{\mu}, \quad x \to +\infty, \ x \in \mathbb{R}_+, \ h>0, \quad \text{(non lattice)}.$$
 $U(k+1)-U(k) \longrightarrow \frac{1}{\mu}, \quad k \to +\infty, \ k \in \mathbb{N}, \quad \text{(lattice)}.$

Hence first order expansion:

$$U(x) \sim \frac{x}{\mu}, \quad x \to \infty$$

Expansion of order 2

If X_1 admits a second moment $\mu_2 = \mathbb{E}[X_1^2]$ then second order expansion (e.g. Feller (1965))

$$U(x) = \begin{cases} \frac{x}{\mu} + \frac{\mu_2}{2\mu^2} + o(1), & \text{non lattice} \\ \frac{x}{\mu} + \frac{\mu_2 + \mu}{2\mu^2} + o(1), & \text{lattice.} \end{cases}$$
 as $x \to \infty$,

One even has $U(x) - \frac{x}{\mu} \ge 0$, $\forall x \ge 0$.

The o(1) term

We set
$$v(x) := U(x) - \frac{x}{\mu} - \frac{\mu_2}{2\mu^2}$$
. (non lattice)
 \longrightarrow Behavior of $v(x)$ as $x \to \infty$?

• Stone (1965): in the case where X_1 is light tailed $(\iff \mathbb{E}[e^{R_0}X_1] < +\infty$ for some $R_0 \in (0, +\infty])$ then

$$v(x) = O(e^{-rx}), \quad x \to +\infty$$

for some r > 0.

- Asmussen (1995): in the case where X_1 has rational Laplace Transform then Explicit expression of v(x) (i.e. of U(x)).
- Mitov and Omey (2014) provide intuitive approximations of $\overline{U(x)}$, and in particular of the v(x) term, for a large class of X_1 .

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

The result, non lattice case

Theorem (Dombry, R. (2014))

Let us suppose that X_1 is <u>non lattice</u>, light tailed with $\mathbb{E}[e^{R_0X_1}] < +\infty$, and satisfies the following assumption :

(A) the equation $g(z) := \mathbb{E}[e^{zX_1}] = 1$ has a finite number of solutions in $S_{R_0} = \{z \in \mathbb{C}, 0 < \Re(z) < R_0\}$.

Let $z_0 = 0, z_1, \dots, z_N$ be these solutions. Then, for all $r < R_0$,

$$v(x) = \sum_{j=1}^{N} \rho_j e^{-x\Re(z_j)} \cos(x\Im(z_j) + \varphi_j) + o(e^{-rx}), \quad \text{as } x \to +\infty,$$

In the case $g'(z_j) \neq 0$, ρ_j and $\varphi_j \in (-\pi, \pi]$ are such that $\rho_j e^{i\varphi_j} = \frac{1}{z_j g'(z_j)}$.

The result, lattice case

Theorem (Dombry, R. (2014), Ct'd)

Let us suppose that X_1 is <u>lattice</u>, light tailed $R_0 \in (0, +\infty]$. Let $z_0 = 0, z_1, \ldots, z_N$ the solutions of the equation $g(z) := \mathbb{E}[e^{zX_1}] = 1$ in the domain $S_{R_0} = \{z \in \mathbb{C}; 0 < \Re(z) < R_0, -\pi \leq \Im(z) \leq \pi\}$. Then, for all $r < R_0$, v(k) has the asymptotic expansion

$$v(k) = \sum_{j=1}^{N} \rho_j e^{-k\Re(z_j)} \cos(k\Im(z_j) + \varphi_j) + o(e^{-rk}), \quad k \to +\infty, k \in \mathbb{N},$$

In the case $g'(z_j) \neq 0$, ρ_j and $\varphi_j \in (-\pi, \pi]$ are such that $\rho_j e^{i\varphi_j} = \frac{1}{(e^{z_j} - 1)g'(z_j)}$.

Prior comments

Main practical issue is solve g(z) = 1 with $g(z) := \mathbb{E}[e^{zX_1}]$

No trivial solution in $\mathbb C$ (except z=0). E.g. $X_1 \sim \mathcal U([0,1])$ we get to solve

$$e^z = z + 1, \quad z \in \mathbb{C}.$$

Elements of Proof (lattice case), Stone (1965) revisited

Recall that $v(k):=U(k)-rac{k}{\mu}-rac{\mu_2+\mu}{2\mu^2}$ and that X_1 concentrated on $\mathbb N$.

Set
$$S_n = \sum_{j=1}^n X_j$$
, $S_0 = 0$, and

$$u_k:=\sum_{n=0}^{\infty}\mathbb{P}[S_n=k]=U(k)-U(k-1),\quad k\in\mathbb{N}.$$

Step 1: one proves that

$$u_k - \frac{1}{\mu} = \frac{1}{2\mu} + \frac{1}{2\pi} \int_{-\pi}^{\pi} \Re\left(e^{-ik\theta} \left[\frac{1}{1 - g(i\theta)} - \frac{1}{\mu} \frac{1}{1 - e^{i\theta}}\right]\right) d\theta$$

(recall that
$$g(i\theta) = \mathbb{E}[e^{i\theta X_1}]$$
)

Elements of Proof (lattice case), Stone (1965) revisited

Step 2 : Integrate $z \mapsto \frac{1}{1-\mathbb{E}[e^{i\theta X_1}]} - \frac{1}{\mu} \frac{1}{1-e^{i\theta}}$ on contour ∂S_r for $r < R_0$ and use Theorem of Residue in order to get

$$u_k - \frac{1}{\mu} = -\sum_{j=1}^N \Re\left[\frac{e^{-kz_j}}{g'(z_j)}\right] + o(e^{-rk})$$

(in the case $g'(z_i) \neq 0$, for ease of presentation...).

Step 3: use the fact that

$$v(k) = \sum_{m=0}^{\infty} [-v(k+m+1) + v(k+m)] = \sum_{m=0}^{\infty} [-u_{k+m+1} + 1/\mu]$$

then conclude.

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N. light tailed case

The (simple) model

- Component with generic lifetime distribution L
- Replaced at each failure time with new component with probability $p \in (0,1)$.

Total Lifetime :
$$T=\sum_{k=1}^{
u}L_k$$
 , where $L_1,L_2,...$ i.i.d. and $u\sim \mathcal{G}(1-p).$

Laplace Transform of T, $\mathbb{E}[T]$, Var(T) computable, what about survival function?

Estimate for lifetime survival function

Set

$$ar{H}(x) := \mathbb{P}[T > x] = \mathbb{P}\left[\sum_{k=1}^{\nu} L_k > x\right]$$

 \longrightarrow Expansion of $\bar{H}(x)$ as $x \to \infty$?

Main Assumption:

- L bounded by some M > 0,
- density f(x) of L is decreasing (e.g. holds if DFR).

Estimate for lifetime survival function

In that case we have the expansion for some R large enough

$$\bar{H}(x) = \sum_{j=1}^{N} \Re \left[\frac{1 - 1/p}{1/p - f(0+)\mathbb{E}[Ze^{z_jZ}]} e^{-xz_j} \right] + o(e^{-rx}), \quad \forall r > R,$$

where Z is a r.v. with cdf $\mathbb{P}[Z \leq x] = 1 - \frac{f(x)}{f(0+)}$ and $z_1,...,z_N$ roots of Equation

$$1+\frac{z}{f(0+)p}=\mathbb{E}[e^{zZ}],\quad z\in\mathbb{C},$$

with positive real part.

Thank you!